

LESSON **Periodic Table Battleship**

Grade Levels: 5-8 Duration: 50 min

Students identify elements of the periodic table by their atomic symbol and their position in the table in this fun activity based on the classic game of Battleship.

	1 I Hydrogen 1008	2 IIA	_										13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA 2 Helium 4,002602	
ZX	3 Lithium 694	⁴ Be Beryllium S0121831											5 B Boron 10.81	6 -1 C _a 12.01		8 Oxygen 15.999	9 Fluorine 18.998403163	10 Neon 20,1797	
v	11 Ddium 22.98976928	12 Mg Magnesium 24.305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIB	10 VIIIB	11 IB	12 IIB	13 Aluminium 26.9815385	I4 Si Silicon 28,085	15 Phosphorus 30.973761998	IG Sulfur 32.01	17 Cl Chlorine 35.45	¹⁸ Ar Argon 39,948	
	Potassium 39,0983	20 Calcium 40.078	Scandium 44.955908	22 Tianium 47,967	23 V Vanadium 50.9415			X	3194	28 Nickel 58.6934	29 Cu Copper 63.546	20 Zn Zinc 65,38	Gallium 69.723	Germanium 72,630	³³ As Arsenic 74.921595		Bromine 79,904	Krypton 83,798	
	Rb Rubidium 85.4678	Strontium 87/62	³⁹ Y Yttrium 88,90584		Niobium 92,90637	Molybdenum 95.95	Technetium (98)	Ruthenium	Rhodium 102,90550	anladiu 106.42	Ag Silver 1072682	48 Cd Cadmium 112,414	149 Indium 114.818	50 Sn Tin 118,710	121.760		126,90447	Xe Xenon 131,293	
	Caesium 132,90545196	Barium 137.327	57 - 71 Lanthanoids		Tantalum 180.94788	74 Tungsten 183.84	Re Rhenium 186.207	Osmium 190.23	Ir Iridium 192.217	Platinum 195.084	Gold	Hg Mercury 200.592	Thallium 204.38	Pb Lead 2072	Bismuth 208,98040		Astatine (210)	Badon (222)	
	Francium	Radiur (226)	89 - 103 Actinoids		Dubnium (288)	Seaborgium (269)	Bohrium (270)	Hassium (269)			××	×	, -	Flerovium (289)	Moscovium (289)	Lr	Ts Tennessine (294)	Oganesson (294)	
		57	a ^{⁵®} C	e [®] P	r ⁶⁰ N	d P	m [®] S	m [®] F	G ⁶⁴	T [®] h	b D		In [®] F	r T	m ⁷⁰ Y	b ⁿ I			
		Lanti 138. 89	anum Ceri 140	um Praseoc 16 91 h P	dymium Neody 0766 92	mium Prome 242 93	thium Sam 151 94 P	arium Euro 0.36 15 95	ppium Gado 15 96 m	Ninium Tert 1585 m 97	bium Dyspi 162 162 162	y Hol 500 184	mium Erk 93033 107 100	5ium The 168.	ulium Ytter 173.	bium Lute 174. 103	r		
		Acti (2	nium Thor 27) 232.0	um Protac 377 231.0	tinium Urar 3588 238.0	nium Neptu 12891 (23	I P F Inium Pluto 37) (2	onium Ame (2	ricium (243)	rium Berk (47) (2	celium Califo 47) (2	prnium Einst 51) (2	einium Ferr (2) (2	mium Mend	elevium 258) Nobe (21	Hium Lawre	ancium 66)		

Outline

Frame the Activity	15 min total
Activate Prior Knowledge	10 min
Playing the Game	35 min total
Introduce the Rules of the game	5 min
Game Play	25 min
Debrief	5 min

Grade Levels: 5-8

Duration: 50 min

Concepts/Skills

Atomic mass, atomic symbol, atomic number, elements, periodic table organization.

Objectives

Students will:

- Identify elements of the periodic table based on their atomic number and symbol.
- Define the difference between a period and group on the periodic table.

thetech.org/eduresources Updated May 2023

Materials and Preparation

Preparation:

- 1. Build the game boards for game play. If time permits, students can build their own boards in class or for homework.
 - Tape or staple one worksheet to the inside of each flap of the manilla folder. Both worksheets should be facing upright when the folder is open horizontally.

Background Information

Used across many science disciplines all around the world, the periodic table of elements is a graphical representation of all known chemical elements. Elements are arranged by increasing **atomic number**, or number of protons within the nucleus of one atom of each element.

In addition to being organized by atomic number, the periodic table is also organized into rows and columns. Rows on the periodic table are called **periods**. Elements in the same period have the same number of **atomic orbitals**. Columns on the periodic table are called **groups**. Elements in the same group have the same number of **valence electrons**.

Periodic Table Battleship

Atomic Orbitals

Each atom contains protons and neutrons, found in the nucleus of the atom. Surrounding the nucleus are electrons, which can be found within different energy levels or atomic orbitals.

The number of atomic orbitals is dependent on the number of electrons in an atom. Each orbital can also only hold a certain number of electrons.

Orbital	Electron Capacity
1	2
2	8
3	18
4	32
5	50
6	72
7	98

Periods: Elements in the same period or row all have the same number of atomic orbitals. The elements below are all in Period 2 as they all have two atomic orbitals.

Valence Electrons

For many atoms, their outermost orbital will not be completely full. When orbitals are left unfilled, the remaining electrons in the orbital are available to either share with or bond to other atoms. These remaining electrons are called valence electrons. Let's look at Carbon for example:

Carbon's atomic number is 6 - it has 6 protons in its nucleus and 6 electrons in the outer orbitals.

The first orbital holds 2 electrons.

The remaining 4 electrons are in the second orbital. These are the valence electrons and are available to bond with other atoms.

Groups: Elements in the same group or column have the same number of valence electrons. This gives elements in the same group similar chemical reactivity properties. The elements below are all in Group I as they each have one valence electron.

Knowing how the periodic table is organized has been and continues to be essential to understanding how elements interact and react with one another and has even led to the discovery of previously unknown elements. In this lesson, students will become more familiar with this organization through a twist on a classic game.

Frame the Activity

Activate Prior Knowledge (10 min)

- 1. Lead a discussion to help students activate prior knowledge about the periodic table.
 - What can you tell me about how the periodic table is organized?
 - What information does the periodic table give us about each element?
- As students share their knowledge of the periodic table, highlight their points using a large periodic table. Use the information from the <u>Background Information</u> to fill in the gaps of your students' knowledge. For example:
 - Elements are arranged in order of increasing size (atomic number).
 - Elements have an atomic symbol, atomic number, and atomic mass.
 - Rows on the periodic table are called periods; columns are called groups.
- 3. Introduce the game:

"Today we will be putting our periodic table knowledge to the test with a friendly game of Periodic Table Battleship! You will be creating a fleet of ships from the elements on your periodic table and see if you can sink your opponent's ships first!"

Lab Connection

If you took the Chemicals of Innovation lab at The Tech, this is a great time to have students recall their experience in the lab!

thetech.org/sciencelabs

Introduce the Rules of the Game (5 min)

- Review the <u>Rules for Periodic Table Battleship</u> with students. Remind them that it is similar to the classic game of Battleship.
- 2. Once students understand the rules, place them in pairs and pass out the **Periodic Table Gameboards** and markers.

Game Play (25 min)

- 1. Have students play for approximately 20-25 minutes or until everyone has completed at least one game round.
- 2. While playing, remind students to use their new periodic table vocabulary to ask their opponent questions about their ships' positions.

Try incorporating other periodic table vocabulary during game play! Students can ask for a specific atomic symbol, atomic number, or even atomic mass.

Debrief (5 min)

- 1. Bring the class back together and have pairs discuss how their game went.
 - Were there any strategies used to correctly guess ship placements?
 - What did elements in horizontally placed ships have in common?
 - What did elements in vertically placed ships have in common?

Next Generation Science Standards

Grades	Framework Element	Description
Grade 5	DCI - PS1.A	Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gasses are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects.
Grades 6-8	DCI PS1.A	Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it.

Vocabulary

- Atomic symbol: A one or two -letter abbreviation for an element. The same atomic symbol is used in all languages.
- Atomic mass: The average mass of an element; the amount of protons plus neutrons
- Atomic orbital: Also called a shell or energy level. The area surrounding the center of an atom where electrons are found. Each orbital can hold a certain number of electrons.
- **Group:** Columns on the periodic table. Elements in the same group have the same number of valence electrons and have similar chemical properties.
- Period: Rows on the periodic table. Elements in the same row have the same number of atomic orbitals.
- Valence electron: Electrons in an atom's outermost orbital that are available to bond with other atoms.

Periodic Table Battleship

Rules of the Game

We suggest the following numbers and sizes of ships for gameplay:

One ship 2 elements in length One ship 3 elements in length Two ships 4 elements in length One ship 5 elements in length

Periodic Table of the Elements

1 IA																	18 VIIIA
1 Hydrogen	2 IIA	_		Atomi	c Number –	→ 1	4	— Symbol				13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He Helium 4.002602
3 Lithium 6.94	4 Beryllium 9.0121831				Name –	→ Hyd	rogen 008 ◀	- Atomic	Weight			5 B Boron 10.81	6 C Carbon 12.011	7 Nitrogen 14.007	8 Oxygen 15.999	9 Fluorine 18.998403163	10 Neo 20.1797
11 Na Sodium 22.98976928	12 Mg Magnesium 24.305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	13 Aluminium 26.9815385	14 Silicon 28.085	15 Phosphorus 30.973761998	16 S Sulfur 32.06	17 Chlorine 35.45	18 Argon 39.948
¹⁹ K	°Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	Fe	²⁷ CO	²⁸ Ni	²⁹ Cu	³⁰ Zn	₃∎Ga	Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Ga ll ium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	Mo	⁴³ TC	Ru	⁴⁵ Rh	⁴⁶ Pd	Ag	⁴⁸ Cd	⁴⁹ In	⁵Sn	⁵¹ Sb	⁵² Te	53	⁵⁴ Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.293
⁵⁵ Cs	Ba	57 - 71 Lanthanoids	⁷² Hf	⁷³ Ta	⁷⁴ W	Re	⁷⁶ Os	⁷⁷ Ir	⁷⁸ Pt	Au	в		⁸² Pb	Bi	PO	⁸⁵ At	[®] Rn
Caesium 132.90545196	Barium 137.327		Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.592	Thallium 204.38	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Radon (222)
⁸⁷ Fr	[®] Ra	89 - 103 Actinoids	¹⁰⁴ Rf	Db	Sg	Bh	HS	¹⁰⁹ Mt	¹¹⁰ Ds	™Rg	¹¹² Cn	¹¹³ Nh				Ts	0
Francium (223)	Radium (226)		Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

57 La Lanthanum 138.90547	58 Ce Cerium 140.116	59 Praseodymium 140.90766	60 Neodymium 144.242	61 Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.964	64 Gadolinium 157.25	65 Tb Terbium 158.92535	66 Dy Dysprosium 162.500	67 HO Holmium 164.93033	68 Erbium 167.259	69 Tm Thulium 168.93422	70 Yb Ytterbium 173.045	71 Lu Lutetium 174.9668
89 Actinium (227)	90 Th Thorium 232.0377	91 Pa Protactinium 231.03588	92 Uranium 238.02891	93 Neptunium (237)	94 Plutonium (244)	95 Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fermium (257)	101 Mendelevium (258)	102 Nobelium (259)	103 Lr Lawrencium (266)