

Next Generation Science Standards Engineering Progression Summarized

	K-2	3-5	6-8	9-12
Vocab / Concept Introduced	 Design Problem = situation that people want to change or create Quantitative Data (Desired Features) 	 Design Problem = a given need or want Criteria = desired feature / criteria for success Constraints = available materials / resources (time/cost) Prototype Fair Test Controlled Variables Qualitative Data Failure Points 	 Constraints (+human/environmental impact) Trade-off Optimal / Optimize Iterate Independent variable Dependent variables Correlation Causation Precision Accuracy Error Analysis Mean, Median, Mode Validity 	 Criteria (+societal needs/wants) Constraints (+satisfy societal requirements) Risk Mitigation Reliability Slope Intercept Correlation Coefficient Linear and nonlinear functions Trigonometric functions Exponentials Logarithms
Skills Summarized Define the Problem	 Simple problem (situation that people want to change or create) Teacher given problem / students understand by: Asking questions Making observations 	 Simple problem with: Several criteria Constraints on materials, time or cost Students research and define the problem 	 Simple problem with: Constraints expand to include scientific knowledge Students define the problem and jointly agree upon design criteria 	 Major, complex global or local challenge Students: Break down the problem into smaller problems Ask questions to clarify and refine the problem Specify qualitative and quantitative criteria / constraints Break down criteria into simpler criterion / approach systematically Prioritize criteria over other criteria (make trade-offs)
Imagine / Create/ Iterate	 Simple sketch or model 1-2 solutions 	 Build prototypes Multiple solutions Identify failure points for aspects of design that can be improved 	 Develop complex models where inputs and outputs can be tested Multiple solutions Combine best features of different designs into a new design Optimize performance by prioritizing criteria and making trade-offs 	 Complex models including computational simulations / models Prioritize criteria and trade-offs to evaluate impact of designs
Test / Reflect (Analyze)	 Teacher-led investigations Compare 2 solutions by: Making observations Making measurements Making comparisons based on data / observations Comparing performance strengths and weaknesses 	 Student teams plan / conduct evaluations Compare 2 solutions by: Including a fair test with controlled variables and multiple trials Collecting quantitative and qualitative data Testing under likely conditions 	 Students plan and conduct investigations individually and with a team Compare multiple solutions by: Using systematic evaluation processes Including fair tests with multiple variables Identifying independent / dependent variables, controls, tools, measurements and amount of data needed Testing inputs and outputs Testing under a range of conditions 	 Students plan and conduct investigations individually and with a team Evaluate a complex conceptual, mathematical, physical and empirical models by: Including fair tests that consider confounding variables and ensure variables are controlled In a safe and ethical manner Using computer simulations
	 Students determine if solution performs as intended / meets the goal by: Collecting, recording and sharing observations Describing patterns and relationships 	 Students assess test data to refine their design by: Representing data in tables / graphically to reveal patterns using digital tools where possible Comparing / contrasting data by different groups Assess solutions individually based on how well each meets the criteria and constraints 	 Students define an optimal operational range to meet the criteria by: Using graphical displays of large data sets to identify temporal and spatial relationships Using statistics and probability (mean, median, mode, error analysis) to analyze data Consider limitations of data analysis Seek to improve precision and accuracy of data Identify characteristics of each design that performed best on different tests for different criteria 	 Students identify characteristics of a design to optimize it relative to the criteria by: Conducting detailed statistical analysis (function fits to data, slope, intercept, correlation coefficient for linear fits) Using tools, technologies or models Comparing data sets for consistency Using models to generate / analyze data Identify failure points and evaluate how well solutions meet societal constraints
Share Your Solution	 Students make a claim about the <u>effectiveness</u> of a solution supported with evidence by: Comparing ideas <u>Assessing whether the</u> <u>solution performs as intended</u> 	 Students make a claim about the <u>merit</u> of a solution supported with evidence by: Comparing solutions based on <u>how well they</u> <u>meet criteria and constraints</u> Citing relevant evidence about how it meets the criteria / constraints. Critiquing peer solutions by citing evidence. 	 Students <u>make an oral or written argument</u> that supports or refutes the performance of a solution based on evidence by: Evaluating solutions to determine whether they meet criteria / constraints. Analyzing / interpreting data for similarities and differences <u>Constructing a convincing argument</u> that supports or refutes solutions 	 Students make and <u>defend</u> a claim or critique based on evidence about the effectiveness of a design solution by basing claims and critiques on: <u>Scientific knowledge</u> Student-generated evidence <u>Prioritized criteria</u> <u>Trade-off decisions</u> Logical arguments regarding <u>relevant societal / environmental / ethical factors.</u>

Created by The Tech Interactive, 2019