
at Home

at Home

at Home
thetech.org/athome

Who says all the fun has to happen at The Tech Interactive?
This computational thinking activity will expand your
problem-solving skills and can be done anywhere!

Puzzling Procedure

Subject:
Computational Thinking

Age:
7+

Time:
30+ minutes

Key Concepts:
Algorithms,
computational thinking,
computer science

Page 1 of 3

Introduction
Have you ever tried to think like a computer? Guess what? You probably do it all the
time without even knowing! Computational thinking is a problem-solving process
that is used in everyday life as well as by computer programs. In this fun activity
you’ll apply your computational thinking skills to jigsaw puzzles. In addition to doing
a puzzle, you’ll create an algorithm or set of instructions to help someone else solve
jigsaw puzzles.

Design Challenge
Create a step-by-step algorithm to describe your puzzle-solving strategy.

Algorithm:
Step-by-step
instructions to solve a
problem. Algorithms
are an important
part of computer
programming and
computational thinking.

Real-world examples:
Recipes, instructions
for making furniture or
building blocks sets,
diagrams of sports
plays, and online map
directions.

1

2

3

Materials

•	 Paper, notecards or
sticky notes

•	 Writing utensils
(paper, pencil, marker, etc.)

•	 Jigsaw puzzle

Puzzle Options
•	 Use a physical jigsaw puzzle.

•	 Try one of our digital puzzles on our Tech
at Home website! Change the number
of pieces to make it simpler or more
challenging!

•	 Feeling creative? Make your own puzzle
by drawing a picture or using an old photo
and cutting it out into random shapes!

Instructions
Do a puzzle
1.	 Refresh your puzzle-solving skills! Start by doing a jigsaw puzzle. Any size will do!

2.	 As you’re solving the puzzle, pay attention to the details that you think about. If
you can, jot down a few quick notes along the way.

	• What do you do first? Perhaps you turn all the pieces over? Or maybe you
spread them out so you can see them.

	• Does your strategy stay the same for the whole puzzle? Does it change as you
complete certain steps?

	• What do you look for at each step?

Tip: If it’s hard to keep track of your train of thought, ask someone else to
solve a puzzle and interview them about their thought process.

Write an algorithm
Look at your notes from solving the puzzle. Write each step down on a notecard,
sticky note or a slip of paper.

Tip: Writing each step on a separate sheet allows you to rearrange steps and
insert new ones as your algorithm develops!

1.	 Start broad and then fill in more specific instructions.

2.	 It can help to start by breaking down the puzzle-solving process into smaller
parts. This is called decomposition in computational thinking.

	• What do you do in any set-up?

	• What do you do first?

	• Do you sort the pieces? How?

	• How do you find two pieces that fit together?

	• What do you do next?

3.	 Organize the steps into the correct order.

4.	 Then, step back and evaluate your algorithm.
Are you missing any steps?

Consider the brute
force algorithm which
could be used to solve
a puzzle. This can
help you compare
and simplify your own
algorithm. A brute
force algorithm is a
method that checks
every possibility until
a solution is found.
Perhaps in puzzles, the
brute force algorithm
would be to check
each puzzle piece
against the others until
the puzzle is solved
(without looking at
other clues like shape,
color or pattern).

Page 2 of 3

https://www.thetechathome.org/puzzlingprocedure
https://www.thetechathome.org/puzzlingprocedure

Test your algorithm
1.	 Don’t forget to test and iterate! Try to have someone else solve a puzzle using

your algorithm. Have them follow your instructions exactly and don’t give them
any extra hints.

2.	 Make observations and reflect on how it went.

3.	 “Debug” your algorithm.

	• Where does your user get stuck?

	• Should the order of your instructions change at all?

	• Does your algorithm need more detail?

4.	 Have fun revising and testing your algorithm.

5.	 Remember with a complex problem like a puzzle, there are usually multiple
solutions and not necessarily a “right” answer.

6.	 Think about how it felt to use computational thinking and algorithms.

	• What is useful about writing an algorithm? Where did it get in the way?

	• What was most important to remember when writing instructions?

Software bugs are errors in a computer program
that result in incorrect or unexpected behavior.

Computer Science Tips
•	 As you get more comfortable, try using If/Then logic to describe the decision-

making process.

	− Map out this logic using a flowchart with simple symbols and graphics to
show the decision-making process.

at Home

at Home

at Home
thetech.org/athome

Share Your Results! Keep us posted about your
progress on social media with #TheTechatHome.

Page 3 of 3

Explore More
•	 Try your algorithm

with more family
members and friends.
You can even send
your instructions
to someone far
away. Does it work
the same way for
everyone? Test your
algorithm with more
complicated puzzles.
What do you need to
adjust?

•	 You see and use
algorithms all the
time. Once you’ve
created an algorithm
for puzzles, try
creating an algorithm
for another task,
problem or process in
your daily life.

Did you notice? This guide is our own algorithm for you!
How did we do? What steps were we missing?

Try a piece

If the piece fits

If the piece fits If the piece
doesn’t fitTry another piece

Try another piece
Return to the pile

and look for a
different piece to try

If the piece
doesn’t fit

Rotate it and try
all orientations

