
T E C H T I P

Philosophy
The Tech and San Jose State University’s College of Science Jay Pinson STEM Education program believe that
ALL youth should be exposed to Computational Thinking (CT), computer science, computing and computer
programming. We believe that “Computer Science for All” requires that these areas be woven throughout
K-12 experiences to ensure that, in today’s technology-driven society, all students gain equitable access to
opportunities now and in the future.

We place a special emphasis on computational thinking since it is fundamental to computer
programming and problem-solving, skills that allow youth to be creators of digital content,
not just consumers. CT is a “problem-solving process” that can be broadly applied across
content areas and everyday life. This includes: decomposition, algorithm design, pattern
recognition and abstraction (to learn more see our Computational Thinking Tech Tip).

Page 1 of 2

Computer Science
Education Principles

thetech.org/bowersinstitute
Updated September 2023

Principle I: Computational Thinking can be integrated with any subject
Computational Thinking is an approach to problem-solving, applicable to most subjects. Introducing CT, computing,
and computer science references that have compelling contexts, allows learners to see direct applications to the
real-world and various career fields. Through computing, models can be developed to explore creative topics, such as
music theory or real-world issues like climate change. These models can be used to support communication around
complex ideas, innovation and data-driven designs. When CT and computing are authentically embedded into different
subjects, it allows those in underrepresented communities to engage in computer science.

Principle II: Use Computational Thinking as a foundation
Teaching Computational Thinking can be done in many different ways on and off the computer. Youth can apply CT
skills to think logically about solving a real-world problem and, with these strong foundations, be more prepared to
develop computer programs as well as non-software solutions to interesting problems. For example, in The Tech’s
model lessons, youth engage in unplugged activities where they review a data set, identify patterns and infer missing
data. Youth then use this robust foundation to develop a computer-based solution.

Principle III: Focus on Computational Thinking, not the tool or language
There are many tools, languages, environments and platforms available to enhance CT skills. It’s important to focus
intently on teaching CT skills, responding to the interests of youth, and selecting the tools appropriate for the problems
being addressed. For example, a block-based environment may be appropriate for early elementary or as a first coding
exposure for older students, whereas a text programming environment may serve the needs of more advanced youth.
Regardless of the tools being used, the CT skills being taught should be called out and explicitly emphasized.

https://www.thetech.org/ctlessons
http://thetech.org/bowersinstitute

Page 2 of 2

Computer Science Education Principles

Principle IV: Tinker and explore!
Youth should be given time to tinker with and explore a new programming environment or computer program. This
non-evaluative tinkering and exploration time increases equity such that youth with less experience can develop some
comfort and confidence in a low stakes activity. When young people are confronted with a new program and provided
with a chance to explore it, they can systematically manipulate it and develop an understanding of how it works.

Principle V: Ask questions, resist the urge to provide the answer
When youth are learning CT and programming, the types of questions they are asked can influence mindsets and
growth. Ask open-ended questions that promote collaboration and active learning, such as: “What do you think will
happen if…” or “What first step might you take to accomplish your goal?” The educator doesn’t need to know all of the
answers; they are there to facilitate.

Principle VI: Iterate!
Designing a computer program or model is an ongoing and iterative process based on the data and evidence available.
For example, the OS software on their phone has gone through many iterations and continues to be modified. Youth
should be asked to actively iterate and improve their work.

Principle VII: There are many solutions to a given problem
In programming, there are many ways to solve a problem. Educators should celebrate when youth develop functional
solutions that are different from what is expected. As with travel, there are many routes one can take; some prioritize
time efficiency while others are shorter in distance but may require more time. In the end, regardless of the route
taken, one will arrive at the destination. In general, the computer program and output should be assessed on creative
success that meets stated goals and/or rubric items. Processes of iteration and optimization can enhance creativity
and help reach stated goals.

Principle VIII: Call out connections to computer science!
It is critical to call out the CT elements that youth are experiencing in the moment and in many different contexts to
help them see the connections of these skills to real life and to the field of computer science. When we explicitly make
these connections, youth realize that they can develop proficiency in CT skills that can be used to problem-solve. This
“call out” normalizes the academic language and expands access to computer science, a sometimes intimidating field,
by reducing the “fear” of the unknown. Youth who otherwise may never have considered computer science may begin
to see themselves as computer scientists.

Principle IX: Celebrate diversity, provide a safe space for ALL and embrace a growth mindset
Diversity of skills and interests should be celebrated, leveraged and valued. A flexible structure and a safe space should
be provided for ALL to explore and grow their computing skills. Adopting and modeling a growth mindset (learning
from mistakes and effort), is crucial. When youth are not finding immediate success in their program, they can test
smaller sections of their program to check what is working (block testing). If youth have met the given objectives, help
them set a goal to improve their program. There will be different levels of familiarity and ability in any group and it’s
important, from the beginning, to establish a collaborative learning culture where everyone feels empowered to
explore and persevere.

These computer science principles were developed in partnership with San Jose State University’s College of Science.

For more resources and lessons on computer science and computational thinking see thetech.org/ctlessons.

https://www.thetech.org/ctlessons

